Прегледај по Аутор "Nikolić, Gojko"
Сада се приказује 1 - 2 од 2
Резултати по страници
Опције сортирања
- СтавкаEstimation of potential soil erosion reduction using GIS-based RUSLE under different land cover management models: A case study of Pale Municipality, B&H(Xi’an Jiaotong University, China, 2022) Golijanin, Jelena; Nikolić, Gojko; Valjarević, Aleksandar; Ivanović, Rade; Tunguz, Vesna; Bojić, Stefan; Grmuša, Milka; Lukić Tanović, Mariana; Perić, Marija; Hrelja, Edin; Stankov, SlobodankaSpatial assessment of soil erosion is an important indicator of ecological soil change and global environmental changes. This is especially true for countries with rich forest cover such as Bosnia and Herzegovina. In this study, the risk of soil erosion was assessed using the Revised Universal Soil Loss Equation (RUSLE) model and the impact of changes in the forest ecosystem, current conditions were compared with possible future forest management scenarios, and measures and solutions were proposed to reduce soil erodibility in vulnerable areas of the Pale Municipality in Bosnia and Herzegovina. The studied area is at increased risk of soil erosion due to natural conditions (mountain relief, climate change, and the frequency of extreme climatic events—drought and heavy rains, which occur more and more frequently in a short period of time) and due to anthropogenic factors, such as large-scale deforestation and conversion of mountain areas for tourism purposes, tracing and construction of ski slopes and ski resorts in general, and expansion of settlements. All this leads to threats to water conservation areas, landslides, floods, forest fires, and additional reduction of forest areas due to drying of forests and expansion of settlements. GIS as a tool provides us with a quick and accurate way to find possible solutions to problems resulting from the intensive use and inadequate monitoring. In this study, we have tried to offer possible solutions and show the benefits that can be obtained by varying the factors that affect soil erodibility and depend on vegetation cover, that is, land use (C-factor). This study presents the application of RUSLE methods in combination with GIS for the purpose of planning economic activities, such as winter tourism development in the community of Pale. An increase in soil loss due to inappropriate land use was found, with the average annual soil loss due to deforestation in the ski area increasing to 909.43 t ha−1 year−1.
- СтавкаModelling ofWildfire Susceptibility in Different Climate Zones in Montenegro Using GIS-MCDA(MDPI, 2023) Nikolić, Gojko; Vujović, Filip; Golijanin, Jelena; Šiljeg, Ante; Valjarević, AleksandarMontenegro has different influences on the weather and climate; in general, according to Köppen’s classification, there are two climate zones: warm temperate (C) and cold temperate (D). The aim of this study is to determine the susceptibility to wildfires in the Montenegrin coastal municipality of Budva and the northern municipality of Rožaje, which are located in different climatic conditions, using multicriteria GIS decision analysis (GIS-MCDA). Nine natural and anthropogenic criteria were used for the analysis. Open geospatial data were used as input data for all criteria. The assignment of weighting coefficients for the criteria in relation to wildfire susceptibility importance was based on the Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (F-AHP) procedures. The results for the AHP and F-AHP models were obtained using theWeighted Linear Combination (WLC) method. According to the AHP model, the very high and high category covers 80.93% of the total area in Budva and 80.65% in Rožaje. According to the F-AHP model, the very high and high category occupies 80.71% of the total area in Budva and 82.30% in Rožaje. The validation shows that the models of GIS-MCDA perform fair in both climatic zones. The proposed models, especially in the absence of geospatial data, can be a strategic and operational advantage in the development of plans and strategies for protection against wildfires.