Логотип Репозиторијума
  • English
  • Српски
  • Srpski
  • Пријави се
    Нови корисник? Кликните овде да бисте се регистровали.Јесте ли заборавили лозинку?
  • Заједнице & Колекције
  • Комплетан Репозиторијум
  1. Старт
  2. Прегледај по аутору

Прегледај по Аутор "Qi, Jiayue"

Сада се приказује 1 - 1 од 1
Резултати по страници
Опције сортирања
  • Учитавање...
    Сличица
    Ставка
    Maker–Breaker domination number for Cartesian products of path graphs P2 and Pn
    (Maison de l'informatique et des mathematiques discretes, 2023) Forcan, Jovana; Qi, Jiayue
    We study the Maker–Breaker domination game played by Dominator and Staller on the vertex set of a given graph. Dominator wins when the vertices he has claimed form a dominating set of the graph. Staller wins if she makes it impossible for Dominator to win, or equivalently, she is able to claim some vertex and all its neighbours. Maker– Breaker domination number γMB(G) (γ′ M B(G)) of a graph G is defined to be the minimum number of moves for Dominator to guarantee his winning when he plays first (second). We investigate these two invariants for the Cartesian product of any two graphs. We obtain upper bounds for the Maker–Breaker domination number of the Cartesian product of two arbitrary graphs. Also, we give upper bounds for the Maker–Breaker domination number of the Cartesian product of the complete graph with two vertices and an arbitrary graph. Most importantly, we prove that γ′ M B(P2□Pn) = n for n ≥ 1, γMB(P2□Pn) equals n, n − 1, n − 2, for 1 ≤ n ≤ 4, 5 ≤ n ≤ 12, and n ≥ 13, respectively. For the disjoint union of P2□Pns, we show that γ′ M B(˙∪k i=1(P2□Pn)i) = k · n (n ≥ 1), and that γMB(˙∪k i=1(P2□Pn)i) equals k · n, k · n − 1, k · n − 2 for 1 ≤ n ≤ 4, 5 ≤ n ≤ 12, and n ≥ 13, respectively.
Адреса
Вука Караџића 30,
71126 Лукавица, Источно Сарајево,
Република Српска
БиХ
Контакт
+387 57 320 330
univerzitet@ues.rs.ba
https://www.ues.rs.ba
понедељак-петак: 07.30 - 15.30
Корисничка подршка
Универзитетски рачунарски центар
+387 57 320 140
urc@ues.rs.ba
https://urc.ues.rs.ba

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback