Calculation of the value of the critical line using multiple zeta functions

dc.citation.epage13571
dc.citation.spage13556
dc.citation.volume8
dc.contributor.authorTanackov, Ilija
dc.contributor.authorStević, Željko
dc.date.accessioned2024-12-19T11:18:25Z
dc.date.available2024-12-19T11:18:25Z
dc.date.issued2023
dc.description.abstractNewton’s identities of an infinite polynomial with complex conjugate roots n−( +it) and n−(  it) are multiple zeta functions for n  1, ),   R and t R. All Newton’s identities can be represented by Macdonald determinants. In a special case of the Riemann hypothesis, the multiple zeta function of the first order is equal to zero,  ( +it)+ (  it)=0. The special case includes all non trivial zeros. The value of the last, infinite multiple zeta function, in the special case, changes the structure of the determinant that can be calculated. The result is the reciprocal of the factorial value (n!) 1. The general value of the infinite multiple zeta function is calculated based on Vieta’s rules and is equal to (n!) 2 . The identity based on the relation of the special case and the general case (n!) 1=(n!) 2 is reduced to the equation  1= 2 . The value of the critical line for all non trivial zeros is singular,  =½.
dc.identifier.doi10.3934/math.2023688
dc.identifier.urihttps://vaseljena.ues.rs.ba/handle/123456789/1418
dc.language.isoen
dc.publisherAIMS Press
dc.sourceMathematics
dc.subjectnon trivial zeros; factorial; imaginary unit; 3.141592…; 2.718281…
dc.titleCalculation of the value of the critical line using multiple zeta functions
dc.typeArticle
Датотеке
Оригинални завежљај
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
Calculation of the value of the critical line using multiple zeta functions.pdf
Величина:
572.15 KB
Формат:
Adobe Portable Document Format
Опис:
Свежањ лиценце
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
license.txt
Величина:
1.71 KB
Формат:
Item-specific license agreed to upon submission
Опис: