ON SOLVING PARABOLIC EQUATION WITH HOMOGENEOUS BOUNDARY AND INTEGRAL INITIAL CONDITIONS

dc.citation.epage268
dc.citation.spage258
dc.citation.volume67
dc.contributor.authorIgnjatović, Mladen
dc.date.accessioned2023-09-01T11:45:40Z
dc.date.available2023-09-01T11:45:40Z
dc.date.issued2015
dc.description.abstractIn this paper we consider the second order parabolic partial differential equation with constant coefficients subject to homogeneous Dirichlet boundary conditions and initial condition containing nonlocal integral term. We derive first and second order finite difference schemes for the parabolic problem, combining implicit and Crank-Nicolson methods with two discretizations of the integral term. One numerical example is presented to test and illustrate the proposed algorithm.
dc.identifier.urihttps://vaseljena.ues.rs.ba/handle/123456789/651
dc.language.isoen
dc.publisherSociety of Serbian Mathematicians
dc.sourceMatematički vesnik
dc.subjectFinite difference method; stability estimate; parabolic equation; non-local condition; second-order of convergence
dc.titleON SOLVING PARABOLIC EQUATION WITH HOMOGENEOUS BOUNDARY AND INTEGRAL INITIAL CONDITIONS
dc.typeArticle
Датотеке
Оригинални завежљај
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
ON SOLVING PARABOLIC EQUATION WITH HOMOGENEOUS BOUNDARY AND INTEGRAL INITIAL CONDITIONS.pdf
Величина:
180.03 KB
Формат:
Adobe Portable Document Format
Опис:
Свежањ лиценце
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
license.txt
Величина:
1.71 KB
Формат:
Item-specific license agreed to upon submission
Опис: