Логотип Репозиторијума
  • English
  • Српски
  • Srpski
  • Пријави се
    Нови корисник? Кликните овде да бисте се регистровали.Јесте ли заборавили лозинку?
  • Заједнице & Колекције
  • Комплетан Репозиторијум
  1. Старт
  2. Прегледај по аутору

Прегледај по Аутор "Mikalački, Mirjana"

Сада се приказује 1 - 4 од 4
Резултати по страници
Опције сортирања
  • Учитавање...
    Сличица
    Ставка
    Maker–Breaker Games with Constraints
    (2021) Forcan, Jovana; Mikalački, Mirjana
    We analyse the unbiased WalkerMaker–WalkerBreaker game, a variant of the well-known Maker–Breaker positional game where both players Maker and Breaker are constrained to choose their edges according to a walk. Here, we consider two standard graph games - the Connectivity game and the Hamilton Cycle game played on the edge set of the complete graph, Kn, on n vertices, and show how fast Walker-Maker can build desired spanning structures in these games.
  • Учитавање...
    Сличица
    Ставка
    Maker–Breaker total domination game on cubic graphs
    (2022) Forcan, Jovana; Mikalački, Mirjana
    We study Maker–Breaker total domination game played by two players, Dominator and Staller, on the connected cubic graphs. Staller (playing the role of Maker) wins if she manages to claim an open neighbourhood of a vertex. Dominator wins otherwise (i.e. if he can claim a total dominating set of a graph). For certain graphs on n 6 vertices, we give the characterization on those which are Dominator’s win and those which are Staller’s win.
  • Учитавање...
    Сличица
    Ставка
    On the WalkerMaker - WalkerBreaker games
    (2019) Forcan, Jovana; Mikalački, Mirjana
    We study the unbiased WalkerMaker-WalkerBreaker games on the edge set of the complete graph on n vertices, Kn, a variant of well-known Maker{Breaker positional games, where both players have the restriction on the way of playing. Namely, each player has to choose her/his edges according to a walk. Here, we focus on two standard graph games { the Connectivity game and the Hamilton cycle game and show how quickly WalkerMaker can win both games.
  • Учитавање...
    Сличица
    Ставка
    Spanning Structures inWalker–Breaker Games
    (2022) Forcan, Jovana; Mikalački, Mirjana
    We study the biased (2 : b) Walker–Breaker games, played on the edge set of the complete graph on n vertices, Kn. These games are a variant of the Maker–Breaker games with the restriction that Walker (playing the role of Maker) has to choose her edges according to a walk. We look at the two standard graph games – the Connectivity game and the Hamilton Cycle game and show that Walker can win both games even when playing against Breaker whose bias is of the order of magnitude n/ ln n.
Адреса
Вука Караџића 30,
71126 Лукавица, Источно Сарајево,
Република Српска
БиХ
Контакт
+387 57 320 330
univerzitet@ues.rs.ba
https://www.ues.rs.ba
понедељак-петак: 07.30 - 15.30
Корисничка подршка
Универзитетски рачунарски центар
+387 57 320 140
urc@ues.rs.ba
https://urc.ues.rs.ba

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback