Прегледај по Аутор "Orlović, Saša"
Сада се приказује 1 - 7 од 7
Резултати по страници
Опције сортирања
- СтавкаGrowth response of different tree species (oaks, beech and pine) from SE Europe to precipitation over time(Institute of Dendrology, Polish Academy of Sciences, 2018) Stojanović, Dejan B.; Levanič, Tom; Matović, Bratislav; Stjepanović, Stefan; Orlović, SašaChanging climatic conditions can have various consequences for forest ecosystems, from increasing frequencies of forest fires, ice and windstorm events to pathogen outbreaks and mass mortalities. The Standardized Precipitation Index (SPI) was chosen for the evaluation of drought impact on the radial growth of trees after extensive preliminary testing of various calculated monthly climate parameters from the CARPATCLIM database. SPI was calculated for periods between 3 and 36 months for different sites (lowland and mountainous parts of Serbia, Southeast Europe), from which Quercus robur, Q. cerris, Fagus sylvatica and Pinus sylvestris samples were acquired. Bootstrapped Pearson’s correlations between SPI monthly indices and radial growth of tree species were calculated. We found that 12-month SPI for summer months may be a good predictor of positive and negative growth of different species at different sites. The strongest positive correlations for five of six tree-ring width chronologies were between 12-month June and 14-month September SPI, which implies that high growth rates can be expected when the autumn of the previous year, and winter, spring and summer of the current year, are well supplied with precipitation, and vice versa (low precipitation in given period/low growth rates).
- СтавкаQuantifying Forest Cover Loss as a Response to Drought and Dieback of Norway Spruce and Evaluating Sensitivity of Various Vegetation Indices Using Remote Sensing(MDPI, 2024) Miletić, Boban R.; Matović, Bratislav; Orlović, Saša; Gutalj, Marko; Ðorem, Todor; Marinković, Goran; Simović, Srđan; Dugalić, Mirko; Stojanović, Dejan B.The Norway spruce is one of the most important tree species in Europe. This tree species has been put under considerable pressure due to the ongoing impacts of climate change. Meanwhile, frequent droughts and pest outbreaks are reported as the main reason for its dieback, resulting in severe forest cover loss. Such was the case with Norway spruce forests within the Kopaonik National Park (NP) in Serbia. This study aims to quantify, spatially and temporally, forest cover loss and to evaluate the sensitivity of various vegetation indices (VIs) in detecting drought-induced response and predicting the dieback of Norway spruce due to long-lasting drought effects in the Kopaonik NP. For this purpose, we downloaded and processed a large number of Landsat 7 (ETM+), Landsat 8 (OLI), and Sentinel 2 (MSI) satellite imagery acquired from 2009 to 2022. Our results revealed that forest cover loss was mainly driven by severe drought in 2011 and 2012, which was later significantly influenced by bark beetle outbreaks. Furthermore, various VIs proved to be very useful in monitoring and predicting forest health status. In summary, the drought-induced response detected using various VIs provides valuable insights into the dynamics of forest cover change, with implications for monitoring and conservation efforts of Norway spruce forests in the Kopaonik NP.
- СтавкаQuantifying Forest Cover Loss as a Response to Drought and Dieback of Norway Spruce and Evaluating Sensitivity of Various Vegetation Indices Using Remote Sensing(MDPI, 2024) Miletić, Boban R.; Matović, Bratislav; Orlović, Saša; Gutalj, Marko; Ðorem, Todor; Marinković, Goran; Simović, Srđan; Dugalić, Mirko; Stojanović, Dejan B.The Norway spruce is one of the most important tree species in Europe. This tree species has been put under considerable pressure due to the ongoing impacts of climate change. Meanwhile, frequent droughts and pest outbreaks are reported as the main reason for its dieback, resulting in severe forest cover loss. Such was the case with Norway spruce forests within the Kopaonik National Park (NP) in Serbia. This study aims to quantify, spatially and temporally, forest cover loss and to evaluate the sensitivity of various vegetation indices (VIs) in detecting drought-induced response and predicting the dieback of Norway spruce due to long-lasting drought effects in the Kopaonik NP. For this purpose, we downloaded and processed a large number of Landsat 7 (ETM+), Landsat 8 (OLI), and Sentinel 2 (MSI) satellite imagery acquired from 2009 to 2022. Our results revealed that forest cover loss was mainly driven by severe drought in 2011 and 2012, which was later significantly influenced by bark beetle outbreaks. Furthermore, various VIs proved to be very useful in monitoring and predicting forest health status. In summary, the drought-induced response detected using various VIs provides valuable insights into the dynamics of forest cover change, with implications for monitoring and conservation efforts of Norway spruce forests in the Kopaonik NP.
- СтавкаThe Impact of Adverse Weather and Climate on the Width of European Beech (Fagus sylvatica L.) Tree Rings in Southeastern Europe(MDPI, 2018) Stjepanović, Stefan; Matović, Bratislav; Stojanović, Dejan; Lalić, Branislava; Levanič, Tom; Orlović, Saša; Gutalj, MarkoEuropean beech (Fagus sylvatica L.) is the most important deciduous tree species in Europe. According to different climate scenarios, there is a relatively high probability of a massive decline in and loss of beech forests in southern Europe and in the southern part of central Europe. Thus, the authors of this study explored the dynamics of tree diameter increments and the influence of extremely dry years on the width of tree rings. This study used dendroecological methods to analyze the growth and diameter increments of European beech trees at locations in Serbia and the Republic of Srpska. The sampling was conducted along the vertical distribution of beech forests, at five sites at the lower limit of the distribution, at five optimal sites of the distribution, and at five sites at the upper limit of the distribution. Long-term analyses indicate that dry conditions during a growing season can reduce tree-ring width, but a reduction in tree growth can be expected as a result of more than one season of unfavorable conditions. Low temperatures in autumn and winter and prolonged winters can strongly affect upcoming vegetation and reduce tree development even under normal thermal conditions during a growing season
- СтавкаThe potential impact of climate change on the distribution of key tree species in Serbia under RCP4.5 and RCP 8.5 scenarios(2021) Miletić, Boban; Orlović, Saša; Lalić, Branislava; Đurđević, Vladimir; Vujadinović Mandić, Mirjam; Vuković, Ana; Gutalj, Marko; Stjepanović, Stefan; Matović, Bratislav; Stojanović, Dejan B.The survival of forest tree species within certain areas of their distributions is in question due to the increasing occurrence of disturbances and degradation processes in forest ecosystems due to climate change. The aim of this paper is to predict changes in the spatial distribution of the ten most important tree species in Serbia (European beech, Pedunculate oak, Austrian oak, Hungarian oak, Sessile oak, Narrow-leafed ash, Silver fir, Norway spruce, Black and Scots pine) using climate indices (Forestry Aridity Index, FAI and Ellenberg Quotient, EQ) with up-to-date climate observations (E-OBS, covering the time period 1990-2019) and projections of future climate conditions (RCP 4.5 and RCP 8.5 scenarios, split into two time periods 2041-2070, 2071-2100). The computation of the area under the receiver operating characteristic (ROC) curves has shown that both FAI and EQ have a “fair” to “excellent” ability to predict the occurrence of five out of ten species (European beech, Silver fir, Norway spruce, Black and Scots pine), with EQ having a slightly better predicting ability. EQ-based projections from mid (2041-2070) to late 21st century (2071-2100) under RCP 4.5 predict that reduction rates will not exceed 25%. Similar reduction rates are given by FAI-based projections until 2070, while rates increase to approximately 35% towards the end of this century. For RCP 8.5, FAI-based projections are significantly worse than EQ-based projections. Irrespective of the used index, projections until 2070 suggest that 55- 75% of existing habitats will remain intact. Towards the end of the century, however, our analysis indicate that 75-85% (EQ) to 90-100% (FAI) of the five analyzed species habitats, will be found outside of their current climate space.
- СтавкаThe use of physiological, biochemical and morpho-anatomical traits in tree breeding for improved water-use efficiency of Quercus robur L.(National Institute of Agricultural and Food Research and Technology, Spain, 2019) Stojnić, Srđan; Kovačević, Branislav; Kebert, Marko; Vastag, Erna; Bojović, Mirjana; Stanković-Neđić, Milena; Orlović, SašaAim of study: In the present paper the nature and level of co-dependence between leaf functional traits and intrinsic water-use efficiency (WUEi) were studied in one-year-old Quercus robur L. seedlings, grown in a common garden experiment under moderate drought conditions. The study was established to identify those traits that might potentially be utilized to improve leaf-level WUEi, and therefore be used in breeding programmes to enhance drought adaptation of Q. robur. Area of study: The study was carried out at the common garden site within the UNESCO Biosphere Reserve Mura-Drava-Danube. Material and methods: The study involved one-year-old seedlings of eight half-sib lines of Q. robur. Eighteen leaf parameters were analyzed; i.e. physiological, biochemical, morphological and anatomical. The data were processed using multivariate statistical methods: a) principal component analysis, b) stepwise regression analysis, and c) path coefficient analysis. Main results: The results showed that leaf stomata traits, particularly stomatal density (SD), and leaf dry mass per unit leaf area (LMA) were the most important traits, closely associated with WUEi. Stomatal density achieved the highest score on PC1 (0.825), in which WUEi had the highest loading (0.920), as well. SD was also included first in stepwise regression model. Research highlights: These results demonstrate that under moderate water stress WUEi in Q. robur half-sib lines were mainly the result of the plants’ structural acclimation to surrounding environmental conditions.
- СтавкаWild cherry (Prunus avium (L.) L.) leaf shape and size variations in natural populations at different elevations(Springer, 2019) Miljković, Danijela; Stefanović, Milena; Orlović, Saša; Stanković Neđić, Milena; Kesić, Lazar; Stojnić, SrđanLeaf shape variations and developmental instability were examined for the first time in natural populations of Prunus avium (L.) L. in the central Balkan region (Bosnia and Herzegovina) at different elevational points, from 230 to 1177 m. above sea level. Geometric morphometric tools were applied to assess the variability of leaf shapes and sizes, while a fluctuating asymmetry leaf index was used as a measure of leaf developmental instability. According to the results of canonical variate analysis for the symmetric component of shape variation and hierarchical analysis of variance for centroid size, the studied populations could be partially differentiated into three groups. The co-variation between leaf form (shape and size) and climate variables was significant, estimated by two-block partial least square analysis. Climate variables (the sum of precipitation in May and the De Martonne aridity index) mostly influenced leaf shape and size. A population situated at the highest elevation had the highest value for fluctuating asymmetry leaf index, which was an indication of developmental instability. High natural variability and interpopulation differences were observed for all studied leaf traits (leaf shape, centroid size, fluctuating asymmetry leaf index, leaf area, leaf length and width, petiole length). For well-known traditional morphometric measures (leaf area, leaf length, leaf width, and petiole length) in accordance with previous studies, intrapopulation variability was greater than interpopulation variability. For centroid size and the fluctuating asymmetry leaf index (measures used in geometric morphometrics) variability was higher among populations than within them. This indicates that geometric morphometrics could give new insights into infra-specific variability.