CNN Classification of the Cultural Heritage Images

dc.contributor.authorĆosović, Marijana
dc.contributor.authorJanković, Radmila
dc.date.accessioned2023-10-20T07:38:05Z
dc.date.available2023-10-20T07:38:05Z
dc.date.issued2020
dc.description.abstractThe cultural heritage image classification represents one of the most important tasks in the process of digitalization. In this paper, a deep learning neural network was applied in order to classify images of architectural heritage belonging to ten categories, in particular: (i) bell tower, (ii) stained glass, (iii) vault, (iv) column, (v) outer dome, (vi) altar, (vii) apse, (viii) inner dome, (ix) flying buttress, and (x) gargoyle. The Convolutional neural network was used for image classification, with the same architecture applied on two sets of the data: the full dataset consisting of 10 categories as well as dataset with 5 different image categories. The results show that both architectures performed well and obtained accuracy of up to 90%.
dc.identifier.doi10.1109/INFOTEH48170.2020.9066300
dc.identifier.urihttps://vaseljena.ues.rs.ba/handle/123456789/858
dc.language.isoen
dc.publisherFaculty of Electrical Engineering, University of East Sarajevo
dc.source19th International Symposium INFOTEH-JAHORINA
dc.subjectcultural heritage; image classification; machine learning, deep neural networks
dc.titleCNN Classification of the Cultural Heritage Images
dc.typeArticle
Датотеке
Оригинални завежљај
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
CNN Classification of the Cultural Heritage Images.pdf
Величина:
1.21 MB
Формат:
Adobe Portable Document Format
Опис:
Свежањ лиценце
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
license.txt
Величина:
1.71 KB
Формат:
Item-specific license agreed to upon submission
Опис: