Next-Gen Manufacturing: Machine Learning for Surface Roughness Prediction in Ti-6Al-4V Biocompatible Alloy Machining

dc.citation.volume7
dc.contributor.authorKošarac, Aleksandar
dc.contributor.authorTabaković, Slobodan
dc.contributor.authorMlađenović, Cvijetin
dc.contributor.authorZeljković, Milan
dc.contributor.authorOrašanin, Goran
dc.contributor.editorLiang, Steven Y.
dc.date.accessioned2024-02-28T11:52:04Z
dc.date.available2024-02-28T11:52:04Z
dc.date.issued2023-11-15
dc.description.abstractMechanical engineering plays an important role in the design and manufacture of medical devices, implants, prostheses, and other medical equipment, where the machining of bio-compatible materials have a special place. There are a lot of different conventional and non-conventional types of machining of biocompatible materials. One of the most frequently used methods is milling. The first part of this research explores the machining parameters optimization minimizing surface roughness in milling titanium alloy Ti-6Al-4V. A full factorial design involving four factors (cutting speed, feed rate, depth of cut, and the cooling/lubricating method), each having three levels, implies the 81 experimental runs. Using the Taguchi method, the number of experimental runs was reduced from 81 to 27 through an orthogonal design. According to the analysis of variance (ANOVA), the most significant parameter for surface roughness is feed rate. The second part explores the possibilities of using different ML techniques to create a predictive model for average surface roughness using the previously created small datasets. The paper presents a comparative analysis of several commonly used techniques for handling small datasets and regression problems. The best results indicate that the widely used machine learning algorithm Random Forest excels in handling regression problems and small datasets.
dc.identifier.doihttps://doi.org/10.3390/jmmp7060202
dc.identifier.urihttps://vaseljena.ues.rs.ba/handle/123456789/1012
dc.language.isoen
dc.publisherMDPI
dc.sourceJournal of Manufacturing and Materials Processing
dc.subjectsurface roughness; biocompatible materials; alloy; Ti-6Al-4V; Taguchi method; ANOVA; neural networks; Random Forest
dc.titleNext-Gen Manufacturing: Machine Learning for Surface Roughness Prediction in Ti-6Al-4V Biocompatible Alloy Machining
dc.typeArticle
Датотеке
Оригинални завежљај
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
jmmp-07-00202.pdf
Величина:
9.55 MB
Формат:
Adobe Portable Document Format
Опис:
Свежањ лиценце
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
license.txt
Величина:
1.71 KB
Формат:
Item-specific license agreed to upon submission
Опис: