Spanning Structures inWalker–Breaker Games
dc.citation.epage | 97 | |
dc.citation.spage | 83 | |
dc.citation.volume | 185 | |
dc.contributor.author | Forcan, Jovana | |
dc.contributor.author | Mikalački, Mirjana | |
dc.date.accessioned | 2023-05-24T09:33:54Z | |
dc.date.available | 2023-05-24T09:33:54Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We study the biased (2 : b) Walker–Breaker games, played on the edge set of the complete graph on n vertices, Kn. These games are a variant of the Maker–Breaker games with the restriction that Walker (playing the role of Maker) has to choose her edges according to a walk. We look at the two standard graph games – the Connectivity game and the Hamilton Cycle game and show that Walker can win both games even when playing against Breaker whose bias is of the order of magnitude n/ ln n. | |
dc.identifier.doi | 10.3233/FI-222104 | |
dc.identifier.uri | https://vaseljena.ues.rs.ba/handle/123456789/202 | |
dc.language.iso | en | |
dc.source | Fundamenta Informaticae | |
dc.subject | positional games, Walker–Breaker games, spanning structures | |
dc.title | Spanning Structures inWalker–Breaker Games | |
dc.type | Article |
Датотеке
Оригинални завежљај
1 - 1 од 1
Учитавање...
- Име:
- Spanning Structures inWalker–Breaker Games.pdf
- Величина:
- 183.02 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Свежањ лиценце
1 - 1 од 1
Учитавање...
- Име:
- license.txt
- Величина:
- 1.71 KB
- Формат:
- Item-specific license agreed to upon submission
- Опис: