Spanning Structures inWalker–Breaker Games

dc.citation.epage97
dc.citation.spage83
dc.citation.volume185
dc.contributor.authorForcan, Jovana
dc.contributor.authorMikalački, Mirjana
dc.date.accessioned2023-05-24T09:33:54Z
dc.date.available2023-05-24T09:33:54Z
dc.date.issued2022
dc.description.abstractWe study the biased (2 : b) Walker–Breaker games, played on the edge set of the complete graph on n vertices, Kn. These games are a variant of the Maker–Breaker games with the restriction that Walker (playing the role of Maker) has to choose her edges according to a walk. We look at the two standard graph games – the Connectivity game and the Hamilton Cycle game and show that Walker can win both games even when playing against Breaker whose bias is of the order of magnitude n/ ln n.
dc.identifier.doi10.3233/FI-222104
dc.identifier.urihttps://vaseljena.ues.rs.ba/handle/123456789/202
dc.language.isoen
dc.sourceFundamenta Informaticae
dc.subjectpositional games, Walker–Breaker games, spanning structures
dc.titleSpanning Structures inWalker–Breaker Games
dc.typeArticle
Датотеке
Оригинални завежљај
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
Spanning Structures inWalker–Breaker Games.pdf
Величина:
183.02 KB
Формат:
Adobe Portable Document Format
Опис:
Свежањ лиценце
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
license.txt
Величина:
1.71 KB
Формат:
Item-specific license agreed to upon submission
Опис: