Comparison of different mathematical models for prediction of self-excited vibrations occurance in milling process

dc.citation.epage60
dc.citation.spage54
dc.citation.volume3
dc.contributor.authorKošarac, Aleksandar
dc.contributor.authorMlađenović, Cvijetin
dc.contributor.authorZeljković, Milan
dc.contributor.authorŠikuljak, Lana
dc.contributor.editorMaksimović, Mirjana
dc.contributor.editorMijić, Danijel
dc.date.accessioned2024-02-28T12:30:39Z
dc.date.available2024-02-28T12:30:39Z
dc.date.issued2019
dc.description.abstractIn modern production, despite the existence of other production methods, metal cutting still plays an important role. The performance of machine tools has a decisive role in terms of productivity and quality of production increase. Undoubtedly, productivity and quality of production are two mail requirements which are key elements to stay on top in a competitive market. One of the most influencing factor that affect the machine tools are vibrations. The most unwanted vibrations that can appear during metal cutting process are self-excited vibrations, which are one of the three kinds of mechanical vibration, free vibration, forced vibration, and self-excited vibration. When it comes to improving the performance of machine tools, the analysis of the appearance of self-excited vibrations and their isolation occupy a significant place. The aim of this paper derives from trends and limitations exists in metal production. The way to isolate the self-excited vibrations is to predict their occurrence by defining the stability lobe diagram. The paper presents two popular analytical methods for identifying stability lobe diagrams in milling, which shows the boundary between stable and unstable zone of machining operations, depending on the number of revolutions of the spindle and cutting depth. First considered method is Fourier series approach and second one id average tooth angle approach. Lather, both stability lobe diagrams were compared with results obtained experimentally.
dc.identifier.doi10.7251/IJEEC1902054К
dc.identifier.issn2566-3682
dc.identifier.urihttps://vaseljena.ues.rs.ba/handle/123456789/1014
dc.language.isoen
dc.publisherUniversity of East Sarajevo,Faculty of Electrical Engineering
dc.sourceInternational Journal of Electrical Engineering and Computing
dc.subjectself-excited vibrations, stability lobe diagram, experimental modal analysis
dc.titleComparison of different mathematical models for prediction of self-excited vibrations occurance in milling process
dc.typeArticle
Датотеке
Оригинални завежљај
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
6490-Article Text-13418-1-10-20200207 (2).pdf
Величина:
710.55 KB
Формат:
Adobe Portable Document Format
Опис:
Свежањ лиценце
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
license.txt
Величина:
1.71 KB
Формат:
Item-specific license agreed to upon submission
Опис: