DOUBLY BIASED WALKER-BREAKER GAMES

dc.citation.epage688
dc.citation.spage685
dc.citation.volume88
dc.contributor.authorFORCAN, J.
dc.contributor.authorMIKALAČKI, M.
dc.date.accessioned2023-07-11T08:03:09Z
dc.date.available2023-07-11T08:03:09Z
dc.date.issued2019
dc.description.abstractWe study doubly biased Walker--Breaker games, played on the edge set of a complete graph on $n$ vertices, $K_n$. Walker--Breaker game is a variant of Maker--Breaker game, where Walker, playing the role of Maker, must choose her edges according to a walk, while Breaker has no restrictions on choosing his edges. Here we show that for $b\leq \frac{n}{10\ln{n}}$, playing a $(2:b)$ game on $E(K_n)$, Walker can create a graph containing a spanning tree. Also, we determine a constant $c > 0$ such that Walker has a strategy to make a Hamilton cycle of $K_n$ in the $(2 : \frac{cn}{\ln{n}})$ game.
dc.identifier.urihttps://vaseljena.ues.rs.ba/handle/123456789/409
dc.language.isoen
dc.publisherComenius University in Bratislava
dc.sourceActa Mathematica Universitatis Comenianae
dc.titleDOUBLY BIASED WALKER-BREAKER GAMES
dc.typeArticle
Датотеке
Оригинални завежљај
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
DOUBLY BIASED WALKER-BREAKER GAMES.pdf
Величина:
215.34 KB
Формат:
Adobe Portable Document Format
Опис:
Свежањ лиценце
Сада се приказује 1 - 1 од 1
Учитавање...
Сличица
Име:
license.txt
Величина:
1.71 KB
Формат:
Item-specific license agreed to upon submission
Опис: