DOUBLY BIASED WALKER-BREAKER GAMES
dc.citation.epage | 688 | |
dc.citation.spage | 685 | |
dc.citation.volume | 88 | |
dc.contributor.author | FORCAN, J. | |
dc.contributor.author | MIKALAČKI, M. | |
dc.date.accessioned | 2023-07-11T08:03:09Z | |
dc.date.available | 2023-07-11T08:03:09Z | |
dc.date.issued | 2019 | |
dc.description.abstract | We study doubly biased Walker--Breaker games, played on the edge set of a complete graph on $n$ vertices, $K_n$. Walker--Breaker game is a variant of Maker--Breaker game, where Walker, playing the role of Maker, must choose her edges according to a walk, while Breaker has no restrictions on choosing his edges. Here we show that for $b\leq \frac{n}{10\ln{n}}$, playing a $(2:b)$ game on $E(K_n)$, Walker can create a graph containing a spanning tree. Also, we determine a constant $c > 0$ such that Walker has a strategy to make a Hamilton cycle of $K_n$ in the $(2 : \frac{cn}{\ln{n}})$ game. | |
dc.identifier.uri | https://vaseljena.ues.rs.ba/handle/123456789/409 | |
dc.language.iso | en | |
dc.publisher | Comenius University in Bratislava | |
dc.source | Acta Mathematica Universitatis Comenianae | |
dc.title | DOUBLY BIASED WALKER-BREAKER GAMES | |
dc.type | Article |
Датотеке
Оригинални завежљај
1 - 1 од 1
Учитавање...
- Име:
- DOUBLY BIASED WALKER-BREAKER GAMES.pdf
- Величина:
- 215.34 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Свежањ лиценце
1 - 1 од 1
Учитавање...
- Име:
- license.txt
- Величина:
- 1.71 KB
- Формат:
- Item-specific license agreed to upon submission
- Опис: